82 research outputs found

    Classification of breast mass abnormalities using denseness and architectural distortion

    Get PDF
    This paper presents an electronic second opinion system for the classification of mass abnormalities in mammograms into benign and malignant categories. This system is designed to help radiologists to reduce the number of benign breast cancer biopsies. Once a mass abnormality is detected and marked on a mammogram by a radiologist, two textural features, named denseness and architectural distortion, are extracted from the marked area. The denseness feature provides a measure of radiographic denseness of the marked area, whereas the architectural distortion feature provides a measure of its irregularity. These features are then fed into a neural network classifier. Receiver operating characteristic (ROC) analysis was conducted to evaluate the system performance. The area under the ROC curve reached 0.90 for the DDSM database consisting of 404 biopsy proven masses. A sensitivity analysis was also performed to examine the robustness of the introduced texture features to variations in sizes of abnormality markings

    Characterization of skin lesion texture in diffuse reflectance spectroscopic images

    Get PDF
    This paper examines various texture features extracted from skin lesion images obtained by using diffuse reflectance spectroscopic imaging. Different image texture features have been applied to such images to separate precancerous from benign cases. These features are extracted based on the co-occurrence matrix, wavelet decomposition , fractal signature, and granulometric approaches. The results so far indicate that fractal and wavelet-based features are effective in distinguishing precancerous from benign cases

    Skin lesion classification using oblique-incidence diffuse reflectance spectroscopic imaging

    Get PDF
    We discuss the use of a noninvasive in vivo optical technique, diffuse reflectance spectroscopic imaging with oblique incidence, to distinguish between benign and cancer-prone skin lesions. Various image features were examined to classify the images from lesions into benign and cancerous categories. Two groups of lesions were processed separately: Group 1 includes keratoses, warts versus carcinomas; and group 2 includes common nevi versus dysplastic nevi. A region search algorithm was developed to extract both one- and two-dimensional spectral information. A bootstrap-based Bayes classifier was used for classification. A computer-assisted tool was then devised to act as an electronic second opinion to the dermatologist. Our approach generated only one false-positive misclassification out of 23 cases collected for group 1 and two misclassifications out of 34 cases collected for group 2 under the worst estimation condition
    corecore